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ABSTRACT

This paper considers compressible turbulent flows at low turbulent Mach numbers. Con-

trary to the general belief that such flows are almost incompressible, (i.e. the divergence

of the velocity field remains small for all times), it is shown that even if the divergence of

the initial velocity field is negligibly small, it can grow rapidly on a non-dimensional time

scale which is the inverse of the fluctuating Mach number. An asymptotic theory which en-

ables one to obtain a description of the flow in terms of its divergence-free and vorticity-free

components has been developed to solve the initial-value problem. As a result, the various

types of low Mach number turbulent regimes have been classified with respect to the initial

conditions. Formulae are derived that accurately predict the level of compressibility after the

initial transients have disappeared. These results are verified by extensive direct numerical

simulations of isotropic turbulence.

1Research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while all of the authors were in residence at the Institute for Comput..r Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.



I. Introduction

Turbulence is the most common state of fluid motion. It is an all pervasive ubiq-
uitous phenomenon present in, to cite a few instances, weather patterns, ocean cur-
rents, high-temperature plasmas, astrophysical jets, and combustion. Despite the
best theoretical and experimental attempts of more than a century, and more recent
computational approaches, turbulence remains to be one of the great unsolved prob-
lems of fundamental physics, and poses a grand challenge to any type of scientific
investigation.

There has of course been some progress in our understanding of turbulence in
low-speed flows which are essentially incompressible (see Dwoyer, Hussaini and Voigt
1984). There have also been a few attempts at predicting the effect of compressibility
on some known results of incompressible turbulence such as the Kolmogorov spectrum
(Zakharov and Sagdeev 1970, Kadomtsev and Petvishvili 1973, Moiseev,Sagdeev, Tur
and Yanovskii 1977, and L'vov and Mikhailov 1978). The majority of work in com-
pressible turbulence focuses naturally on the linear regime, owing to the inherent
difficulty of treating nonlinearities which now involve variable density as well. Moyal
(1952) appears to be the first one to look at spectra of homogeneous isotropic turbu-
lence in compressible fluids. He decomposed the velocity field in the spectral space
into a longitudinal component (random noise) and a transverse (eddy turbulence)
component. This is in fact equivalent to a Helmholtz decomposition (grad-nt of a
scalar and curl of a vector) in physical space. The longitudinal component in physical
space is variously known as the acoustic component or compression turbulence; the
transverse component is also termed the incompressible component, the solenoidal
component or shear turbulence. A broad conclusion of his work was that the inter-
action between these two components is exclusively due to the nonlinear terms, and
such interactions are the strongest at high levels of turbulence and at high values of
Reynolds number. The properties of sound emitted in the far field by eddy turbulence
were studied by Lighthill (1952, 1954, 1956). His formula for sound emission is found
in laboratory experiments to remain valid far beyond the linear regime. Kovasz-
nay (1957) proposed a decomposition of compressible turbulence into three modes -
the vorticity mode, the entropy mode and the acoustic mode - and showed how to
determine their levels and correlations from mass flow and stagnation temperature
fluctuations measured by a hot-wire anemometer. Chu and Kovasznay (1958) have
outlined a consistent successive approximation procedure in terms of an amplitude
parameter, and have provided explicit formulae for second-order interactions among
these three modes. They provide no explicit solutions since their main purpose was
to provide a consistent framework to assess the nonlinear interactions in the experi-
mental data. Tatsumi and Tokunaga (1974) and Tokunaga and Tatsumi (1975) study
the interactions of weakly nonlinear disturbances such as compression waves, expan-
sion waves and contact discontinuities using a reductive perturbation method due
to Taniuti and Wei (1968). The key result is that the interaction between waves
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of different families of characteristics leads to alterations in their amplitudes, phase
velocities and propagation directions, whereas the interaction between waves of the
same family of characteristics causes merger or coalescence. They further inferred that
the statistical properties of two-dimensional shock turbulence are similar to those of
one-dimensional shock turbulence which in turn are identical to those of Burgers tur-
bulence. More recently, in a preliminary study of return to isotropy in a compressible
flow, Lumley (1989) has provided some orders of magnitude estimates in terms of
Mach number and Reynolds number. An excellent review of the published literature
on compressible turbulence up to 1967 may be found in Monin and Yaglom (1967).

The computational approach to turbulence is based on the Navier-Stokes equa-
tions. The first attempt to solve numerically the equations of motion for compressible
homogeneous turbulence is due to Feiereisen, Reynolds and Ferziger (1981). They as-
sumed the divergence of the initial flow field and its time-derivative to be both zero.
It was therefore not surprising that their results for isotropic compressible turbulence
did not show any departure from the corresponding incompressible data. Recently,
Passot and Pouquet (1986) have carried out numerical simulations of two-dimensional
homogeneous compressible turbulent flows. They show that the behavior of the flow
beyond an initial turbulent Mach number of 0.3 differs sharply from the lower Mach
number cases which are characterized by the absence of shocks.

In the present paper, we develop an asymptotic theory (with turbulent Mach
number as a small parameter) to solve the compressible Navier-Stokes equations.
The problem is set up as an initial-value problem to study the influence of initial
conditions on the subsequent turbulence structure and its dynamical evolution. Ex-
plicit relationships between the initial turbulent Mach number, pressure and velocity
fluctuation levels are derived which are valid after the initial time transients have
disapeared. Direct numerical simulations of two-dimensional isotropic compressible
turbulence are performed to validate the results.

II. Theoretical Analysis

A. Problem Formulation

The compressible Navier Stokes equations are, in non-dimensional variables,

t- + V.(pu) = 0,

atpu

at + V.(puu)e (1)7MR
0--- + u ' V P + yP V ' u  = R r. V T +  

4
1

,

at Ve cT Re
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where

d=2i ['(VU + VUT ) _ l.(V.U)] (2)

is the viscous stress tensor (with bulk viscosity assumed zero), i is the identity tensor,
and a = 1(Vu + VuT) d (3)

is the viscous dissipation function. The equation of state is

P = pT. (4)

The density, velocity, temperature and pressure are respectively
p*
P
PR
U*

S= R

T*TR'
p*

P =
ROPRTR

where the dimensional reference values are denoted by the subscript R and R9 is the
universal gas constant. Dimensional variables have an asterisk superscript. Distance
and time are scaled respectively with respect to LR and tR = LR/UR. In the text, x
refers to the cartesian position vector.

The Prandtl number Pr = (/RCp)/KR, the Reynolds number Re = (PRURLR)/.R;

y is the ratio of specific heats. Viscosity and conductivity are denoted by P and r.
respectively and are scaled with respect to kLR and KR.

The reference Mach number

MR UR (5)
M ' y-RgTR

is related to the time-dependent turbulent Mach number

M= < R >

< 2= MR < ->. (6)
T

The objectives of the following analysis is first to classify the various types of
equilibrium turbulent regimes (distinguished by the presence or absence of shocks and
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also by the fraction of the total kinetic energy solely due to compressibility effects),
and second, to predict the range of initial conditions that leads to each one. The

effect of viscosity is felt either on a viscous time scale (much greater than the acoustic

time scale), or during the formation of shocks. In the latter case, viscosity serves to

prevent the formation of singularities. Although there is a distinct possibility that

shocks will form as a result of certain types of initial conditions, viscosity does not help

initiate the processes (wave steepening) which eventually lead to shocks. Rather, the

viscosity diffuses the sharp gradients to generate shocks of finite thickness. The above

considerations lead us to neglect all viscous effects in the theoretical formulation of

the full viscous, Navier-Stokes equations. This assumption will be verified a posteriori

by the direct numerical simulations.

In the following analysis, the turbulent Mach number is assumed to be very much

less than unity, so that the sound velocity is much greater than the flow velocity.

Under these circumstances, the acoustic time scale is much less than the convective
time scale, which in turn is much less than the viscous time scale (if the Reynolds
number is sufficiently large). As will be shown later, the different regimes emerge on
the acoustic time scale, during which time any inconsistency in the acoustic compo-

nent of the flow is washed away. In other words, time boundary layers only extend
over a time period of O(MR).

Dropping the viscous and heat conduction terms, Eqs. (1) become (in nonconser-
vative form)

ap-- + u. Vp + pVu 0,
at

+u.Vu)+ VP=0, (7)

op
- + u - VP = -- PV.u.

The initial conditions are arbitrary with the restriction that both MR and the root
mean square (rms) pressure, Iip(x, 0)11, be much less than unity. For the remainder of
this analysis, we assume that for homogeneous turbulent flows, the maximum norm

and the L2 norm are of the same order of magnitude.

B. Asymptotic Analysis

The system of equations (7) is now investigated by an asymptotic analysis which

assumes MR << 1. The pressure P is decomposed into a mean and a fluctuating

component:
P = I + p, (8)

where

41Pl << 1. (9)
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For simplicity, we neglect any consideration of the entropy mode and assume the
homentropic condition

P= p'. (10)

The density is expanded in powers of p according to

p = 1 + -y-'p+ O(11pI 2). (11)

Using the expansions (8) for pressure and (11) for density, Eqs. (7) become (to first
order in IIpII)

Ou 

(12)
op + u. VP + V.u = 0.

At t = 0 the initial data is

u(x,0) = uo(x),

(13)

p(x,0) = po(X).

It is convenient for the purpose of analysis to split the velocity vector according
to

I = u + U ,  
(14)

where the solenoidal component u'(x, t) satisfies the time-dependent incompressible
Navier-Stokes equations

---" +  u  " V u1  = - V P',

(15)

Vu'u = 0,

with initial conditions

u'(X,0) = u0'()
(16)

V-uo = 0.

The incompressible pressure pi satisfies the Poisson equation

V 2 pI = -Vu, : Vu' (17)

from which it is inferred that
pI = O(u[2 ). (18)
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The initial solenoidal velocity is determined from the decomposition

UO(X) =U(X) + Uo(X). (19)

If the flow is homogeneous, it is easy to show that uo(x) and uc(x) are unique
once uo(x) is specified. When the flow is non-homogeneous, an arbitrary potential
function can be added to the decomposition (19). The transverse velocity component,
u1 is divergence-free for all time (since it satisfies the time-dependent incompressible
Navier-Stokes equations). Although u' is initially vorticity-free, it acquires a small
degree of vorticity subsequently. Kreiss, Lorenz and Naughton (1990) have estimated
this vorticity to be O(Mk).

Substitution of Eq. (14) into Eqs. (12) and manipulation of the resulting expres-
sions using Eqs. (15) yield

O- + u I" VuC + ucC.VuI + uC. VUC = - 1M(VP -

uJ-u 1 - 7MR
(20)

-- +  VP + Vp + 7V -u
c  = 0.

at

The momentum equation in Eqs. (20) is simplified if the perturbation pressure is
decomposed according to

p = -YMRp + 5pC. (21)

This particular decomposition removes pl from the evolution equation for uc. At
t = 0,

p'(x, 0) = PI0() (22)

is uniquely determined from the incompressible evolution equations, so that there
is no ambiguity in the computation of pC(x, 0). The uniqueness of the pressure
decomposition is maintainea for all time. The parameter 6 is defined to insure that

1lPC(x,0)It = 1. (23)

The total initial velocity u is also normalized to unity, i.e. Iluo(x)I = 1. This is most
easily accomplished by choosing

UR = IIu;(x)ll. (24)

Therefore, both uc and ur are 0(1). From Eq. (18), Ilp'll = 0(1). Incompressible
variables vary on a slower time scale than the acoustic time scale, which is the time
scale of interest, so that their order of magnitude will remain invariant in time. In
contrast, we will demonstrate that certain combinations of initial conditions can lead
to time boundary layers which can change the order of magnitudes of compressible
variables on a time scale of O(MR).

6



Substitution of Eqs. (14), (21) into the system (12) leads to the evolution equations

auC + 
____ +U Vc+Au VC 0+±uI.VuCuC.VuC+ Au c + -± -

c O,

aPt -MR
a--u- +  " VpC +  " Vpc + BuC + -YV.u

for the compressible components of the flow variables, where

Auc = uc . Vu',

BuC - jM uc. Vp',
6

G = -n--u-p]
M Ot

For reference, the orders of magnitude for A, B and G at t = 0 are

A = O(1),

B ('YMR),

G -"

Since A, B, G only depend on incompressible quantities, their order of magnitude is

constant over the time scale of interest. The initial data is

uC(x,O) uo(x) - u,(x) =

p(X, 0) =p0(X) _7RP0 = P0 X)•

Note that uc is vorticity-free. The pressure P(x) is now given by

P(x, t) = 1 + 7Mp'(x, t) + 8pC(x, t). (25)

It must be noted that although pC and u ¢ are 0(1) at t = 0, there is no guaranty

that they will remain so. Should they exceed that order, they will be scaled down,
otherwise terms might be neglected in the governing equations which should be kept.

C. Regime Classification

Freezing coefficients in Eqs. (25) makes it clear that there are two different time scales

present, i.e. the convection scale of order 0(1), and the sound wave scale of order
O(MR). Since the initial compressible velocity field uc(x) is vorticity-free, we expect
uc to vary on the fast acoustic time scale. Therefore we introduce a new time variable

t' - . (26)

MR
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In terms of t', Eqs. (25) become

OuCVc-Or---; + MR[(u, + u c ) "-VuC + A u c ] +  VPc  = 0,

(27)

t-- + MR [(u + uC) • VpC + Buc ] + v.UC = MR G.

The system of equations (27) is hyperbolic and for 8 << MR or 6 >> MR it is highly
asymmetric. Therefore the solution will in general grow rapidly, thus invalidating
the original scalings (see appendix). Only with the symmetrized version of Eqs. (27)
can we be sure that the solution at t > 0 is bounded by the order of magnitude of
the solution at t = 0. Therefore we symmetrize the system in such a way that the
initial data are not "scaled up" because otherwise nonlinear terms which are initially
negligible may not remain so. The change of variables which leads to symmetry is
dependent on whether the coefficient of Vp' in Eq. (27) is less or greater than unity.
In terms of 6, we therefore distinguish two cases.

8 < MR'Y

This regime is characterized by low levels of initial acoustic pressure fluctuation.

We first introduce a new dependent variable

- 1C (28)p_ pR
MR'Y

which insures that

IpoC'il < 11poCII = 0(1). (29)

Eqs. (27) become

auc
t- + MR[(u' + uc) • Vu C + Auc] + Vp c ' - 0,

(30)
-- + MR [(u + uC) . Vp C + 8 Bu c] + V .uc  -C,

with initial data

uC(x,0) =
pC'(x,0) - 6p0(x).

-YMR

By construction, uC(x, 0) and pC'(x, 0) are 0(1). If they should be much less than
unity, the dependent variables are rescaled so that they become 0(1), in which

case the coefficients of Eqs. (30) are replaced by smaller coefficients, and the :m-
proximations below become more valid. (The notation f= 0(M) is equivalent to
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limM-.of(M)/M z 0 < oo. On the other hand, the O(M) symbol only states that
the limit is finite, possibly zero.) The system (30) is a well-behaved system of dif-
ferential equations. However, one must check whether the convective terms remain
negligible when t' = 0(1). It is easily shown that on the fast time scale, the lowest
order evolution equations are given by the linear wave equations

19C + V p c ' = 0,
19t'

Ot-----I + V-u ¢  = O,(9t/

with the initial data

uC(x,0) = u0(x),

P C'(x,0) - -8PC X.
'Y MR

On the convective time scale, Kreiss et al. (1990) have shown that the wave equation
still describes the acoustic component of the flow.

From the wave equation, it is now easy to predict the order of magnitude of u C

and pC as a function of initial magnitudes. After a time t' = 0(1), both u C and pC,

will have the same order of magnitude, given by

uC(x,t ' ) _p (x,t') = (max(uC(X),pC'(X))),

- (max(u0c(x), 6

The results are summarized in table 1 for all different initial estimates of velocity.

U 0  pC 0  U 00 P0

0(1) 0(i) 0(1) -
10(MR') 0(1) O(max(MR, -- ) Omax(7 '  0)

Tha--, 1))

Table 1: Order of magnitude of -quilibrium levels of compressible pressure and
acoustic velocity as a function of initial levels.

With the chosen inital normalization for the velocity, u' must be 0(1), unless
uC = 0(1). The choice of the initial magnitude of the incompressible velocity compo-
nent partly determines the initial variation of the ratio of compressible kinetic energy
to total kinetic energy.

6 > MR7Y
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Now we introduce the new variable

uC, = MRn" C (31)5

which insures that
u'IoI < IlUoCII = 0(1). (32)

Using Eq. (31), Eqs. (27) become

UC + (MRu' + -u C). VuC'+ MRAuC'+ Vpc  = 0,

(33)
apc .c,) &
t-- + (MRu +  U ).VpC +  Buc' + V 'uc' = MR G

"y ^Y
with the initial data

uC(x,0) - s

(34)
PC(x,0) = ;0 (x) =6(1).

Once -gain, if the initial data in Eq. (34) should be much less than unity, a rescaling
of velocity and pressure would simply decrease the coefficients of the quadratic terms.

As long as uc'(x,t ' ) = 0(1), Eqs. (33) reduce to

OuC' + u '. Vc' + VPc = ,

(35)
pC + _ *uC'. Vp c + 6 Buc , + V.uC, = 0,at' ^ 7

with initial conditions given by Eq. (34). When t' = 0(1),

IIuC'(x't')II = IIPC(x't')II,
u o(max(PO ,u')), (36)

= 0(1).

Equations (31) and (36) imply that

uc(x, t') 6( - (37)

When 8 = 6(1), the convective terms balance the time derivative terms, in which

case wave steepening may occur on a t' = 0(1) time scale, and there is a propensity

for shocks to form. Note that when shocks do occur, the turbulent Mach number, Mt

is no longer small, but has increased by a factor i/MR from its initial value.
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D. Results

In the previous section, we established the conditions for two separate asymptotic
regimes, depending on whether the ratio of 6 to 7MR was lesser or greater than unity.
We now wish to deduce some physical consequences from the results of the previous
section. To this end, we consider various levels of initial rms values for uc0 and 6.
The rms of ul is fixed at unity. Only when I u0I I = 0(1) can Iu' I < 0(1). It is then

easily shown that the rms level of u1 can be increased to unity without affecting the
order of magnitude estimates at t' = 1.

Table 2 summarizes the theoretical findings from the previous section. To properly
interpret the table, replace a cell value of, for example, 3 by O(MA). A subscript (),
refers to the value of a variable after the initial transients have died away (t' = 6(1)),
also referred to as an equilibrium state. When viscous effects are taken into account,
the equilibrium state of all quantities varies over the viscous time scale. They also
fluctuate in time due to higher order convective effects that have been neglected to
lowest order in the current expansion. For example, on the incompressible convective
time scale, the terms MRu' • Vu c induce small fluctuations of the variables about
the equilibrium state of the system.

The rms levels of uo and 8 are given in the first two columns of table 2. The fifth
and sixth columns contain the new quantity

S u +1UC112 (38)J- IUC112 + i1JU 111

which is the fraction of the total kinetic energy solely due to acoustic effects. Note

that at t = 0, the denominator is unity by construction, so that

HlU0o,11 / - o (39)

and
IlUCll = Vr-. (40)

From Eq. (37), 1
X =1 + M21Ju1112 '  (1

and since Iu'H1 = 0(1), 8 = 6(1) always implies that X. = 6(1). Consequently,
the lower the initial level of compressibility at a fixed MR (i.e. the lower Xo), the
stronger the initial transient (which extends over the time period O(MR)). As this
imbalance intensifies, the propensity for shocks to form also increases. Table 2 re-
flects these statements in the rows corresponding to = 0(1). When u c  0(1),
u0 = 0(M'), n > 1. However, the value of n does not change the previous conclu-
sions. Based on the results in Sarkar, Erlebacher, Hussaini and Kreiss (1989), it F,
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straightforward to show that

X 1 1 + 2

o 2 1 - 0.5X0(1 ) (42)

where

Mry,

u o 8 u 00  pc Xo X. Fo

0 0 -1 0 0 0 2
0 1 0 0 0 0 0
0 2 0 -1 0 0 -2
0 3 0 -2 0 0 -4
1 0 -1 0 2 0 4
1 1 0 0 2 0 2
1 2 1 0 2 2 0
1 3 1 -1 2 2 -2
1 4 1 -2 2 2 -4
2 0 -1 0 4 0 6
2 1 0 0 4 0 4

2 2 1 0 4 2 2
2 3 2 0 4 4 0
2 4 2 -1 4 4 -2
2 5 2 -2 4 4 -4

Table 2: Estimates of equilibrium levels of compressible pressure (pC), (uC),
X s a function of a wide range of initial level- for pC and uc. Table entries
should be interpreted as 0(MlaIe entry).

Two separate regimes (different from the mathematical regimes of the previous
section) are apparent from table 2. For large values of 6, 1IIpII = 6(1), while uC
increases sharply. This sudden increase over the acoustic time scale is most important
when 8 is large and u' is small. The fact that this increase in the acoustic velocity is
not contingent on 6 = 0(1) indicates. that an initial imbalance in compressible energy
can occur without the need to appeal to wave steepening. When 8 is sufficiently
small, uc remains at its initial level and large pressure waves appear in the flow.
The compressible pressure imbalance becomes more severe with decreasing u c and
decreasing 8. Equilibrium initial conditions are characterized by the juncture between
the two aforem,-ntioned regimes. This corresponds to

4 = (-).(44)
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Using Eq. (39), Eq. (44) becomes

M 2 0(1). (45)

The function

F(t) - Y MRx (46)
82

was introduced by Sarkar et al. (1989) and shown to play a fundamental role in the

description of compressible turbulence. The last column in table 2 tabulates the value

of Fo = F(O) for the various cases. It is now easy to see that a necessary condition

for the appearance of shocks is 8 = 1 (see previous section). If the latter condition

is not satisfied, the level of compressibility will remain small for all time, which is

inconsistent with the appearance of an isotrop;c distribution of shocks.

It is interesting to establish the conditions under which p is a good approximation
to the total perturbation pressure p. To this end consider the relation between pC,

pI and p:

82 11pC11 2 = [pHj2 + _Y2MRjlp'j 2  (47)

which is justified if p(x) are p'(x) are assumed to be decorrelated. This is true by

construction at t = 0 in our direct numerical simulation code (discussed in a later
section). From Eq. (18), II p' and IIu'I are related by

II Iil = illu 1112,
= cl(1 - X0), (48)

where a, is an assumed 0(1) constant. Using Eq. (48), Eq. (47) becomes

I1Pc112 [pPoll1 + _,2MR{a2(1 - Xo) 2. (49)

The incompressible component of the pressure field is therefore negligible when

[1Poll >> ,M a(1- xo). (50)

This result will be verified with the help of direct numerical simulations. Equa-
tion (50) tells us that one cannot neglect the influence of p1 at higher levels of MR

and at lower levels of the initial compressibility ratio, X0.

III. Numerical Simulation

A. Numerical Algorithm

Our direct simulations of two-dimensional compressible turbulence are based on Eqs. (1).
The flow is assumed to be isotropic. Hence a double Fourier representation is appropri-
ate. Spectral methods, by nature of their high accuracy and low dispersive and dissi-

pative errors are ideally suited for this problem. Spatial derivatives are approximated
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by Fourier collocation (Canuto, Hussaini, Quarteroni and Zang 1988). In each coor-
dinate direction, N grid points are used; for example x = 27rj/N, j = 0, 1,.. , N - 1
in the x direction. The derivative of a function .F(x) with respect to x is calculated
from the analytic derivative of the trigonometric interpolant of .F(x) in the direction
x. Many simulations of incompressible, homogeneous turbulence have used a Fourier-
Galerkin method. The compressible equations, however, contain cubic rather than
quadratic nonlinearities and true Galerkin methods are more expensive (compared
with collocation methods) than they are for incompressible flow. The essential dif-
ference between collocation and Galerkin methods is that the former are subject to
both truncation and aliasing errors, whereas the latter have only truncation errors.
As discussed extensively by Canuto, et al. (1988), the aliasing terms are not signifi-
cant for a well-resolved flow. However, care is needed to pose the relevant equations
for a collocation method in a form which ensures numerical stability. For this reason,
the convective term in the momentum equations is actually used in the equivalent
form -[V.(puu) + pu. Vu + uV.(pu)]. 

(51)
2

As noted by Feiereisen, Reynolds and Ferziger (1981), this form, together with a
symmetric differencing method in space (for example Fourier collocation), ensure
conservation of mass and momentum. Moreover, energy is conserved for the semi-
discrete inviscid equations.

We are interested in the low subsonic regime MR << 1. The sound speed is in
this case much greater than the flow velocity and this imposes a severe restriction
on the time step of any explicit time marching numerical scheme. To remove this
constraint, a splitting method is adopted. The first step integrates implicitly

Op0- -= 0,
8(pu) 1 1
--- + -[V.(puu) + u. V(pu) + pu. Vu] - -V.d, (52)

6_ 2 Re

5t +U.V YVUCV(U
-y V 2 T".V2 T + "Y(_Y - 1)MR

RePr Re

from which the acoustic effects that vary on the fast time scale O(MR) have been
removed. The second step integrates the "acoustic equations" which vary on the fast
time scale. These equations are

Op_49i + V.(pU) = 0,
Opu + 10+pu 1M--VP = 0, (53)
at + MR
-+ 2V. (pu) = 0.

at+

14



where co is the root mean square (rms) of the sound speed.

This splitting is employed at each stage of a low-storage third-order Runge-Kutta
method. To minimize the errors due to the large implicit time step, Eqs. (53) are
integrated analytically. In Fourier space the system (53) become

+--t+ k rh = 0)

ah Lk
-+ 2 P - 0, (54)

--t ck. ri = 0,
at 0

where rhi = pfi and Fourier transformed quantities, which depend upon the wavenum-
ber k, are denoted by a circumflex. Equations (54) are solved exactly in Erlebacher,
Hussaini, Speziale and Zang (1987) and are rewritten here for completeness:

1^ CokAt,) cokAt5 )

A(2) = A(1) + 1[A cos(MV ) + B sin(MVk...) - A],
ik .,okAt,, cok ,

-ic2) = me kM) _ fi_ [A sin(t ") - B cos(MV.) +B], (55)co M~ f-yM R Vr- MRV/-q
p(2) = A cos(cokAt) + b cokAt,

- MRVt- MR V snk

where k = Ikl is the magnitude of the Fourier wavevector, A -
) B i~k. r= P).

Superscripts 1 and 2 relate to the end of the first and second fractional step respec-
tively. The effective time-step of the Runge-Kutta stage is denoted by At,. The
advantage of this splitting is that the principal terms responsible for the acoustic
waves have been isolated. Since they are treated semi-implicitly, one expects the
explicit time-step limitation to depend upon v + Ic - col rather than v + c. (Although
there is also a viscous stability limit for the first fractional step, it is well below the
advection limit in the cases of interest.) This is clearly efficient at low Mach num-
bers. Since the second fractional step is integrated analytically, it does not generate
dispersion or dissipation errors. The only errors incurred are time splitting errors.

If one is truly interested in the detailed time-evolution of the acoustic components,
the time-step must be small enough to resolve the temporal evolution of these waves.
Note however, that because the acoustics are treated exactly in the second step, the
large time step simulation still produces accurate results, but the data is not available
at intermediate times.

The expected stability limit of this two-dimensional Fourier collocation method
for the compressible Navier-Stokes equations has the form

Ax Ay
At <a min( -AX +.Y (56)

ilul + Ic -col IvI + Ic -col
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For the third-order Runge-Kutta method employed here a = 0.54. For accuracy
purposes, the results herein are all based on a = 0.1.

B. Initial Conditions

The initial conditions for the direct numerical simulations presented here are similar
to those presented by Passot and Pouquet (1987). They are sufficiently general to
produce the various turbulent regimes we expect to occur when MR << 1. One must
separately specify the reference Mach number MR, the Reynolds number, Re, the
Prandtl number, Pr, the rms levels of u , Uo , 1IpoII, ITo0[, and the autocorrelation
spectrum for p, T, u c and ul. We now detail the procedure used in the numerical
code.

We first generate random fields in physical space in the range 1-0.5,0.51 for uo,
po, and To. Next, the velocity is decomposed into the sum

U0(x) = UC(X) + Uo (x) (57)

where

V.Uo/ = 0,

VXu o = 0.

This decomposition is unique for homogeneous flows and is accomplished in Fourier
space according to the prescription

uI k
u = U- k. k,

fic =ft _ ft.

After transforming the velocity components back to physical space, we rescale u c ,

u , p, and T to impose a prescribed autocorrelation spectrum. The autocorrelation
spectrum Ep(k) of a variable p(x) is defined as

J p(x)p(x)dx = J Ep(k)dk. (58)

For example, the 2D energy spectrum for u, i.e. E(k), is the autocorrelation spectrum
Eu.u.

We now impose the spectrum

E(k) = ke- (59)

on each of the variables. The procedure for imposing the required spectrum E(k) is
explained using the density as an example. One scans the wavenumber space, and
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for each pair (k,, ku), the corresponding spherical shell is determined. The Zth shell is
defined by

1 1
(i- < k < i + 5). (60)

where k = ~ + k2. All spherical shells have unit width. The 0 th shell is empty
because k = (0,0 ) is the mean component which does not contribute to the autocor-
relation spectrum. The contribution of the jth shell to the autocorrelation spectrum
thus becomes

E" I y (k)[12 (61)

where E* is the discrete representation of '+1/2 E*(k)dk. (For 2-D flows, spherical
should be interpreted as circular.) Defining Ei as

Ej = E(i) (62)

where E(i) is obtained from Eq. (59), the density is rescaled according to

)(i ( .() F', (63)

in order to impose the desired spectrum. In a similar way, the autocorrelation spectra
for uc, u' and T are calculated. For the velocity, the procedure is identical to that
described for p, except that the scalar p is replaced by a vector, and I k(k) 2 is replaced
by Ii(k)J2 .

It is still possible to rescale these quantities by an arbitrary constant in physical
space without changing the properties of its autocorrelation spectrum. Therefore, wc
impose given rms levels for p, T and u by an appropriate rescaling. There still remains
a degree of freedom on the velocity, since u c and u, can be weighted independently
without affecting the rms of u. Therefore, we specify the initial level of compressibility
in the flow according to

f uC2dx

f (uC2 + u 2)dx (64)
The denominator of Eq. (64) is the total kinetic energy of the system since f u .u' = 0
by construction.

The mean values of p and T are then added to the thermodynamic variables to
obtain

p l+p,
T - 1+T.

The reference pressure in the code is chosen to be PR = PRUR; consequently the
nondimensional pressure is then calculated from

pT

P- pM (65)
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where p and T are respectively the non-dimensional density and temperature. The
turbulent Mach number Mt is related to the reference Mach number MR according
to Eq. (6).

IV. Numerical Validation of Theory

In this section, we show results of 2-D direct numerical simulations on grids of 64 x
64 to validate the theory described in the preceding sections. This validation is
accomplished by comparing the value of X after several acoustic periods as predicted
by the computation, against that given by the theory. The parameter F, defined by

Eq. (46) is also computed and compared with numerical results.

Given the large parameter space, in every run, the density and temperature fluctu-
ation rms levels are set equal to each other. An extensive parameter range is covered
by considering all combinations of

Xo = (0.1,0.5,0.9),

MR = (0.03,0.08,0.3),

1lP[l = 1IT1 = (0.01,0.05,0.1).

Cases are referred to by a 3 digit combination. For example, case 123 refers to
Xo = 0.1, MR = 0.08 and 1lPl = I1T1h = 0.10. Simulations are run at Re = 150,
1lull = 1, k0 = 10. This corresponds to a microscale Reynolds number RA = 20. The
various diagnostics are computed at every iteration.

The quantities considered for comparison between the numerical computations
and the theory results are

F IIU" IX (66)

and X. Both these quantities are computed by averaging them over several consecutive
iterations: X is averaged over iterations 5 to 10 (X5-1o) and 10 to 15 (XIO-1s), while
F is averaged over iterations 10-15 (F 10 -15 ). Their equilibrium values X, and F.
are computed by averaging their values over the last 60 iterations of the 400 iteration
numerical simulation. The two sets of averages for X give an idea of the convergence
rate of X towards the theoretical prediction Xth . If X is averaged over too few time
steps, the value could be either over or under predicted since X(t) is an oscillatory
integral which tends to unity. On the other hand, if X is averaged over too many
steps, the effects of viscosity will be noticeable, and agreement with Xth will not be
reached. Averages over five iterations prove adequate.

Table 3 summarizes the simulation results. Note that XIO-1s is in closer agreement
with XT u than is Xs-10. On the other hand the average X decays as a function of
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case X5-1o Xio-15 00 F F o-15  Foo 6/fpoII

1il 0.11 0.11 0.08 0.11 1.00 1.01 1.01 1.00
112 0.63 0.62 0.44 0.62 0.03 0.98 1.01 1.00
113 0.90 0.86 0.76 0.87 0.01 0.98 0.99 1.00
121 0.06 0.06 0.05 0.06 6.15 1.00 1.00 1.05
122 0.25 0.21 0.14 0.22 0.25 0.92 1.00 1.00
123 0.58 0.52 0.32 0.49 0.06 1.68 0.99 1.00
131 0.08 0.05 0.06 0.05 86.5 0.73 0.93 5.10
132 0.09 0.07 0.06 0.07 3.46 0.88 0.96 1.39
133 0.11 0.13 0.09 0.11 0.87 1.09 0.95 1.10
211 0.38 0.38 0.24 0.38 4.32 1.03 1.01 1.00
212 0.77 0.77 0.59 0.77 0.17 1.01 1.00 1.00
213 0.94 0.92 0.84 0.92 0.04 0.96 0.99 1.00
221 0.30 0.35 0.21 0.34 30.7 1.07 1.01 1.01
222 0.47 0.47 0.29 0.47 1.23 0.93 0.99 1.00
223 0.73 0.69 0.29 0.68 0.31 1.23 1.00 1 00
231 0.40 0.27 0.47 0.33 432. 0.69 0.96 2.93
232 0.40 0.29 0.20 0.35 17.3 0.71 0.96 1.12
233 0.42 0.35 0.23 0.38 4.33 0.79 0.99 1.03
311 0.84 0.84 0.67 0.83 7.78 1.03 1.01 1.00
312 0.95 0.95 0.88 0.95 0.31 1.02 1.00 1.00
313 0.99 0.98 0.92 0.98 0.08 0.93 0.99 1.00
321 0.78 0.83 0.63 0.82 55.3 1.07 1.03 1.00
322 0.86 0.86 0.70 0.87 2.22 0.96 1.01 1.00
323 0.94 0.92 0.81 0.93 0.55 1.06 0.99 1.00
331 0.85 0.76 0.63 0.82 778. 0.71 1.02 1.12
332 0.85 0.77 0.63 0.82 31.2 0.72 1.01 1.00
333 0.86 0.80 0.64 0.83 7.80 0.79 1.01 1.00

Table 3: Comparison of two-dimensional direct simulation data against theo-
retical predictions. All symbols are defined in the text.
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time in part due to viscous effects which is reflected by the low values of X". compared
to X" in the table.

Sarkar et al. (1989) showed analytically that, for low Mach number Lurbulence,
the parameter F approaches, and then oscillates about a value of F, = 1. Table
3, regarding Fo are in agreement with this result. The value of F depends on the

compressible component of pressure, p¢C, not p. Nonetheless, it is p, not pC which is
used to compute F for table 3. Furthermore, the time interval, required to obtain a
good average over the acoustic oscillations also increases with MR. This explains why

F 10-15 is not close to unity at the higher values of MR. The last column measures
the departure of the initial compressible rms pressure from the initial rms pressure.
The cases where 6/1lpoII > 1 correlate well with a non-equilibrium value of F after 15
iterations. On the viscous time scale, F is nonetheless close to unity in all cases, which
reflects that the turbulent Mach number has decreased substantially (see Eq. (50)),
i.e. p' has become negligible with respect to pC.

The ratio of Xi0-5 to X" is furthest from unity when MR = 0.3, which is explained
by the longer acoustic time scale. Since the averages are computed over a fixed number
of iterations, the sample length at MR = 0.3 is not adequate, and the prediction for

X,, is not very good. The lower value of Xoo with respect to X" arises because X
decays on the viscous time-scale. On the other hand, F remains close to unity, and
is basically unaffected by the viscosity terms.

Turbulent simulations with initial flowfields for which F0 = 1 preclude initial time
boundary-layers which might otherwise impose stringent restrictions on time-stepping
and code accuracy. We now derive an implicit relation for X as a function of MR and

jHplI. To this end, we begin by collecting the required formulas. Henceforth, all
quantities refer to initial conditions that are consistent with an equilibrium (F = 1).

Based on a general velocity decomposition

L, = a(uC + ,u') (67)

where a is such that IlJul = 1, the compressible to total kinetic energy ratio is written

as
IuC112 I lpC1(6

X =iluC1 1 32 + Iu1JII2 - y2M (68)

and the rms of the compressible pressure field becomes

11pC11 2 = 11pI11 +y 2M1IIp'1 2,
-- IIl' + 'y2M~~1 2Ilu'lII,

where we have assumed that p and p' are decorrelated. By construction, they are

decorrelated at t - 0 in the numerical code from Eq. (21) More realistically how-
ever, pI and pC are probably decorrelated since the incompressible and compressible

components of the flowfield evolve quasi-independently.

20



From the previous set of equations one obtains

IP11p1=2 _Y 2 [X _ a2M2(I _ X)21 (69)

Contour plots of x are shown in Figure 1 (a, = 1). It is seen that for mndcratc to
high values of X, the relationship between IIplI and MR is linear, which simply restates
that IlpCll and 1Iipl are approximately equal. At low values of X, jpj; decreases, and
eventually reaches zero. In other words, in a turbulent flow in acoustic equilibrium
(F = 1), high rms pressure at high turbulent Mach numbers imply that X is close
to unity. Since a necessary condition for the generation of shocks is 6 0(1), it
follows that when shocks are present in a turbulent compressible homogeneous flow
in acoustic equilibrium, the compressible part of the flow must dominate.

V. Conclusions

In this paper, an asymptotic theory that is based on an initial-value formulation of the
equations of motion for compressible homogeneous turbulent flow has been presented.
The expansion parameter is the turbulent Mach number, which is assumed to be
small. A key feature of the theory is the decomposition of the turbulent velocity field
into two physically meaningful components. The first is solenoidal and satisfies the
time-dependent incompressible Navier-Stokes equations. This uniquely determines
the second component which is initially irrotational, but acquires a small amount of
vorticity at later times. One consequence of this decomposition, is the simultaneous
separation of the pressure field into incompressible and compressible components.
The incompressible component is proportional to M R .

To lowest order, the asymptotic theory describes the acoustic part of the flow by a
wave equation which is coupled to the solenoidal flow through the initial conditions.
At later times, stronger coupling will occur through the neglected convective and
viscous terms in the momentum equation. Order of magnitude estimates permit an
apriori estimate of the compressibility levels of the flow as a function of the initial
conditions. It is found that the initial flow can evolve towards two basically different
states (in the absence of shocks). If F0 < 1, the pressure fluctuations remain at their
initial levels, while the velocity fluctuations increase in such a way that X becomes
0(1). On the other hand, if F0 > 1, large pressure waves develop over a time of
0(MR), and the rms level of the acoustic velocity remains constant. This transient
behavior is well described by the solution to the wave equation, and has been checked
against extensive two-dimensional direct numerical simulations. Note however that
the theory is also valid for three-dimensional turbulent flows and spot checks have
been conducted.

It has also been established that a necessary, but not sufficient, condition for the
generation of shocks is that the flow must be in an initial state of disequilibrium (i.e.
F < 1) which results from an initial pressure level which is 0(1).
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Several issues need further clarification. First, it is still not clear if there are more

stringent initial conditions which could guarantee the emergence of isotropic shock

distributions in two or three-dimensional compressible turbulent flows. Moreover,
it is not clear how the theory should be modified if the reference Mach number is

no longer small. Second, the current paper only treated the lowest order equations
which resulted fLom the asymptotic expansions. To understand the evolution of the

turbulent flow on the convective and viscous time scales, it is necessary to keep both
viscous terms, and higher order terms in the Mach number expansion. These higher

order terms will allow an explicit computation of the effects of the incompressible
eddies on the acoustic waves and vice versa. These two issues, are now being studied

and will be the focus of future publications.
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Appendix A

I. Appendix

We want to explain the behavior of hyperbolic systems which are far from symmetric.
Let us first consider the system of ordinary differential equat-cns

u- Au (0 u, (= (Al)U2

with initial data
u(0) = u0 . (A2)

The matrix A is antisymmetric (AT = -A) so the eigenvalues it., (j = 1, 2) are purely
imaginary and the corresponding eigenvectors yj are orthonormal with respect to the
scalar product

< u, V >= T1 v1 + U2v 2 , Jul2 =< u, u >, (A3)

where an overbar denotes complex conjugate. The general solution of Eq. (Al) is
given by

u(t) = ale'Ityl + U 2 e12ty 2  (A4)

where

1 = < yi,u 0 >, 072 =< y 2 ,uO > . (A5)

From the orthogonality of the eigenvectors,

IU(t)12 = 1,7112 + 1 02 1 = Ju(0)2, (A 6)

and the amplitude of the solution does not change. This is true for any antisymmetric
matrix which can be shown by the energy method

aIu(t12 = a
= < Ut, U > + < U,Ut >

< Au,u > + < u, Au >
- < u,Au > + < u, Au >

0.
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The fourth equality is a direct consequence of the pure imaginary eigenvalues of A.

Now consider the system

ut La 0 u. (A7)
SLe

- 1  0

Introducing the new variable

(i 0 C1/2 U, (A8 N

we obtain the antisymmetric system

1t=-l/2a(0 0 ) fi" (A9)

By the previous result,

q) I 1(t)I2 + Jf2(t)12

= Iz2(0)12 + iL2(0)12

= Iui(0)12 + EJ12(0)1.

Assume now that ul(O) 0(1) and u2 (0) =0 ol). The general form (A4) of the
solution tells us that in general both L,(f' -- ,iand 2 (t) = 0(1). Therefore we
obtain for the original variables

1i(t) f--- i (t) = 0(1)

u2 (t) El'"U2 (t) = o( -E/2)

which shows that the amplitude

lu(t)l = o(f-1/2)lu(0)j (A10)

increases dramatically for sufficiently small e though the eigenvalues of A are still
purely imaginary. We can also express the result in the following way. Assume that
ul(0) = 0 and u 2(0) = 1. Then Ifi(t)12 = c and

lu 0t 1l -1, (A ll)

i.e. for this initial data, the amplitude does not increase. If we now make a small
perturbation in ul(0), say ui(O) = 77, then the perturbation will be amplified such that
ui(t) . 0(1 + &1/2r) and u2(;) 0(1 ± c 2t/). Thus if 7 >> Ei/2 the perturbation

destroys the solution.

There are no difficulties in generalizing the results. Consider the system

ut + Au = 0, (A12)
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where A is an n x n matrix and u is a vector with n components. Assume that there
is a diagonal transformation

D = diag(d,.,d,), 0 < di < 1, (A13)

such that DAD is antisymmetric. Then the amplitude of the solution can grow by

a factor maxi d,', i.e.

Ou(t)l = O(maxd1) fu(O)j. (A14)
3

In particular, if we initialize the data such that

Iu(01l l u(0)l, (A15)

then we can find perturbations 77 which grow to the order max, d-177.

After Fourier transform, a hyperbolic system

ut Au. (A16)

becomes
ftt = wAfi. (A17)

The eigenvalues of twA are purely imaginary and often there is a diagonal transfor-

mation D such that
twDAD - ' = antisymmetric matrix. (A18)

Then we can apply our arguments. As an example, we consider the wave equation,
written as a first order system

ut 0 1 l 0 u1. (A19)

The Fourier transform is of the form (A7).
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